Global Dispersal of Microorganisms and Pathogens: Biofilms Inside Ballast-Water Tanks

- Lisa A. Drake (Old Dominion University),
- Robert E. Baier (Industry/University Center for Biosurfaces, University at Buffalo),
- Martina A. Doblin (Old Dominion University),
- Fred C. Dobbs (Old Dominion University),
- William P. Johnson (University of Utah),
- Anne E. Meyer (Industry/University Center for Biosurfaces, University at Buffalo),
- Parke A. Rublee (University of North Carolina Greensboro)

11th International Marine Corrosion & Biofouling Congress • San Diego, CA • 21-26 July 2002

We know that microorganisms are very abundant in seawater:

(most are not pathogenic forms)

Therefore, the number of bacteria and viruses transported globally is staggering.

Potential pathogens

Vibrio cholerae

Gulf of Mexico (McCarthy et al. 1992)
Chesapeake Bay (Ruiz et al. 2000) *Pfiesteria piscicida* (Rublee, unpublished)
HAB species (Hallegraeff and others) *Cryptosporidium* sp. (Graczyk, unpublished)

Many microorganisms possess survival strategies to withstand harsh conditions

cysts

spores

Microbial values in ballast water vs. Chesapeake Bay

Microbial metric

Lines = range of given microbial metric in Chesapeake Bay Symbols = ballast-water grand means (n = 20 - 51)error bars are 1 SD

Bacteria - Choi et al. 1999 Bacteria growth - Choi et al. 1998 VLPs - Wommack et al. 1992, Drake et al. 1998 Chlorophyll *a* - Choi et al. 1998

Dark blue bars are from Control Holds; light blue from Exchange Holds n = 2, with 5-6 subsamples per replicate Error bars represent one standard deviation

No evidence of the "incubator hypothesis"

Instead, the "decay hypothesis" seems applicable

Nonetheless, profound numbers of microorganisms are transported globally

A broad estimate of microorganismal growth

IF:

- most microorganisms have a 10°C temperature range for optimum growth (Brock et al. 1994),
- microorganisms inhabit ballast water at the midpoint of their optimum temperature

THEN:

- microorganisms will grow best when discharged into water ± 5°C of the ballast water.
- from the data, we conclude that <u>about half</u> of ships arriving to Chesapeake Bay contain microorganisms that will encounter optimum temperatures at the time of delivery.

What about "interior hull fouling", biofilms?

Resistant to

- Predation
- Chemical treatment

 Biofilms can have greater bacteria abundance and activity than water samples (e.g., Haglund et al. 2002).

Colonization by fouling Donor region organisms Fouling planktonic/benthic assemblage community -colonization processes; larval settlement, fragmentation and attachment, clonal growth -antifouling strategies Species surviving voyage Colonization of Fouling assemblage -growth form or life history recipient region upon arrival in -location of settlement site -colonization processes recipient region -resistance to stressors -invisibility of recipient -adhesion/fouling release temporal smear community strategies temperature desiccation: substrate "intertidal" biofilms salinity Introduced fouling Continued reproduction **Established** species introduced species of introduced species

Abundance of microorganisms and pathogens associated with biofilms inside ballast-water tanks...

1. Field sampling:

 Collect biofilm samples, analyze them for microbial constituents

- Community metrics: total bacteria, virus-like particles, chlorophyll a
- Specific pathogens: Vibrio cholerae, Pfiesteria spp., Pseudomonas spp., etc.

2. Field Experiments:

- Deploy field sampling devices (BOBs) during voyages
 - Measure microbial metrics in biofilms on slides

- water in tank

...and their capacity to act as 'vertical seed banks'

3. Laboratory Experiments:

Future work

Interaction between biofilm and sediments in ballast-water tanks

- Survival of specific microorganisms in new environments
 - Genetic diversity
 - Antibiotic resistance
 - Transfer of 'new' strains of microorganisms

Acknowledgements

Local shipping agents

- Capes Shipping
- Inchcape Shipping
- John S. Connor
- T. Parker Host
- W.J. Browning
- Field and laboratory
 - Leslie Kampschmidt
 - Kathy Moreira
 - Paul Richardson
 - Rob Ragsdale

Piermasters

- Norfolk Southern
- Pier IX

DTA

Ships' Chief Officers x 68

Daniela FriedmannTim Mullady _____

