Internal Hull Biofouling: Effects of Surface Properties and Resuspension of NO-BOB Sediments

Robert Forsberg, Robert Baier, and Anne Meyer SUNY at Buffalo Fred Dobbs, Martina Doblin, and Lisa Drake Old Dominion University Philip Jenkins Philip T. Jenkins & Associates, Ltd.

Acknowledgments: NOAA award #NA96RG0483 (New York Sea Grant Project R/EMS-9) Dr. Fred Dobbs, Dr. Lisa Drake (Old Dominion University)

Questions

- Relationship of ballast water biofilms to transport of nonindigenous, exotic species to new ports?
- Comparative aboard-ship biofilm growth/sampling methods?
- Influences of ports (water quality), materials (surface energy), and ballast exchange on biofilm characteristics?

Prior Work

- PBU (Portable Biofouling Unit)
 - Flow cells
 - Surface Energy
- Benchmark Organisms
 - Immunofluorescence Staining
 - 5 species, all Gram negative rods, comprise max. 39% of biofilm species

(Ref: Zambon, JJ, Huber, PS, Meyer, AE, Slots, J, Fornalik, MS and Baier, RE (1984) In situ identification of bacterial species in marine microfouling films by using an immunofluorescence technique. Applied and Environmental Microbiology, Vol. 48, No. 6:1214-1220.)

This Work

- Compare PBU with BOB (Ballast Organic Biofilm) sampler
- Examine ballast exchange events
- Assess influence of port location and sequence on biofilm complexity

Portable Biofouling Unit

Ballast Organic Biofilm Samplers

Hadera cruise path

Hadera References

- Hulsmann N, Baier RE and Galil BS (2000) The Hadera Study: Effects and limitations of open-ocean exchange concerning the dispersal of heterotrophic protists, American Society of Limnology and Oceanography (ASLO), Oral Presentation
- Drake LA, Ruiz GM, Galil BS, Mullady TL, Friedmann DO, and Dobbs FC, (2002)
 Microbial ecology of ballast water during a transoceanic voyage and the effects of open-ocean exchange, Marine Ecology Progress Series, Vol. 233:13-20

Biofilm on glass from BOB sampler deployed aboard Hadera for 17 days, light microscope image

(Meyer et al., ASLO 2000)

 Risk assessment, prediction, and limitation of transport of bioinvaders in biofilms. American Society of Limnology and Oceanography

(Ref: Meyer, AE, Baier, RE, Hulsmann, N, Friedmann, D, Forsberg, RL (2000) Risk assessment, prediction, and limitation of transport of bioinvaders in biofilms. American Society of Limnology and Oceanography (ASLO), Poster Presentation.)

ASLO Conclusions (Meyer et al., 2000)

- viable biofilms were formed on all test materials placed in the ballast tanks of the coal carrier *Hadera*
- Biodiversity was different on different test surfaces; methylsilicone polymeric coatings supported the least diverse biofilms
- biofilms formed on surfaces in the ballast tanks of the Hadera "seeded" secondary biofilms in artificial seawater environments in the laboratory

Forsberg, Patel, GLRC 2000

- High surface-energy materials showed the most attached colonizers
- Flow cells installed after mid-ocean ballast exchange showed new attached filamentous colonizers
- Ballast water biofilms roughly follow the nonlinear biofouling vs. surface energy curve established for hull fouling and other types of biological adhesion
- Mid-ocean ballast water exchange increases the apparent biodiversity of some biofilms

SEM images of biofilms on surfaces before ballast exchange (left) and after ballast exchange (right)

First Conclusion

 Ballast exchange can increase biodiversity and biocomplexity of biofilms, and therefore is not always a good idea.

Second Conclusion

 Minimal biodiversity & clumping on lowenergy surfaces, recommend use of similar ballast compartment wall coatings for ease of re-suspension of biofilm organisms into volume phase

BOB deployments on ZIM cruises

- ZIM China 1 biofilm sampler
- ZIM Pacific 3 biofilm samplers, 2 cruises BOB A & B – cruise I BOB B & C – cruise II
- Identical travel routes, different ballast histories
- Mediterranean Sea >>> Atlantic Ocean >>> Caribbean Sea >>> Pacific Ocean >>> South China Sea >>> Reverse >>>

Statistical analysis of numbers of benchmark organisms

- No material dependence
- No BOB position dependence
- No up/down dependence
- Yes select port dependence
- Yes "prior" exposure dependence

New Observations

- Up/down inorganic sedimentation difference
- Ballast history and port differences
- Different compartment (corrosion?) conditions noted

Work in Progress: Biofilms as "vertical seed beds" in North American Great Lakes where NOBOB vessels are energetically reballasted, re-suspending sediments into biofilms

