Chronic toxicity of antifouling biocides, copper pyrithione to a marine fish, the mummichog (Fundulus heteroclitus)

OKazuhiko MOCHIDA¹, Katsutoshi ITO¹, Hiroya HARINO², Toshimitsu ONDUKA¹, Akira KAKUNO¹ and Kazunori FUJII ¹

1 National Research Institute of Fisheries and Environment of Inland Sea, Fisheries Research Agency, Hiroshima, JAPAN
2 Osaka City Institute of Public Health and Environmental Sciences, Osaka

2 Osaka City Institute of Public Health and Environmental Sciences, Osaka, JAPAN

Introduction

→ We have focused on toxicity of

Metal pyrithione, such as copper pyrithione (CuPT) and zinc pyrithione (ZnPT)

The 2nd and 3rd most used biocides in Japan (Okamura and Mieno, 2006) Embryo and larvae of fish could be influenced by the toxicity of the metal pyrithione

In the present study · · ·

 Chronic toxicity to a marine teleost fish (Early life-stage toxicity test)

 Effect of the metal pyrithione and their photo-degradation products on acetylcholinesterase activity

Early-life toxicity test

[OECD TG 210, etc]

- Mummichog (embryo, late brastula – early gastrula)
- Test chemical (CuPT)
 0(Cont), 0.5, 1, 2 & 4 μg/L
- Flow-through condition

Fertilized egg
(embryo)

14d 21d

Water temp., 24.5±0.2 °C pH, 7.6 DO, 6.1±0.1 mg/L

Dark (24h)

• Growth
• Survival
50d • Abnormality

Water analysis

CuPT ^{□→} LC-MS/MS

Effect of long-term exposure of CuPT on time to hatch and hatchability of mummichog

C, control; SC, solvent control

* Significantly (*p*<0.05) different from value for control

Effect of 50-d exposure of CuPT on growth of mummichog

Concn. (μg/L)	n	Total length (mm)	Body weight (mg)
Control (0)	51	30 ± 0.7	302±21
Solvent Cont.	58	32 ± 0.5	368±15
0.5	50	30 ± 0.7	319 ± 20
1	56	31 ± 0.5	308 ± 16
2	64	25 ± 0.8	209±19
4	52	16 ± 3.0	55±11

Data significantly (p<0.01) different from value for control

Effect of 50-d exposure of CuPT on survival of mummichog

C, control; SC, solvent control

** Significantly (p<0.01) different from value for control

Vertebral deformity induced by the exposure to CuPT

Scale bars, 0.5 mm

Ref. Vertebral deformity was also induced in medaka and zebrafish by ZnPT-exposure (Goka, 1999; Sánchez-Bayo and Goka, 2005)

Inflammatory mass induced by the exposure to CuPT

Morphological abnormality (%) induced by long-term exposure of CuPT

Concn.	Duration of exposure			
(μ g/L)	30 d	40 d	50 d	
Control (0)	0	0	0	
Solvent Cont	0	0	0	
0.5	0	0	0	
1	0	0	0	
2	0	4.6 ± 5.3	5.5±6.4	
4	0	75±29	100 ± 0	

Index of abnormality

The early life-stage toxicity test

Time to hatch and growth are the most sensitive parameters.

The lowest observed effect concentration (LOEC) \implies 2 μ g/L (actual concn. 0.37 μ g/L)

The no observed effect concentration (NOEC) \longrightarrow 1 μ g/L (actual concn. 0.24 μ g/L)

 Effect of the metal pyrithione and their photo-degradation products on acetylcholinesterase activity

Organophosphorous pesticide

Inhibition of acetylcholinesterase activity (neuro-signal blocking)

Induce vertebral deformity

Degradation products of metal pyrithione

CuPT, ZnPT

HPS

dine)

(2-mercaptopyridine)

• HPT
(2-mercaptopyridine-Noxide)

PO (Pyridine-N-oxide)

• (PT)2

(2,2'-dithio-bis-pyridine-N-oxide)

• (PS)2

(2,2'-dipyridyl disulfide)

PSA

(Pyridine-2-sulfonic acid)

Inhibition assay for acetylcholinesterase activity •

- Measured by the method described previously (Ellman et al., 1961)
 with a slight modification
- Acetylcholinesterase from bovine erythorocyte (5 munits)

Mechanism of the induction of the morphological abnormality

Summary

Based on toxic effects on time to hatch, growth and survival,

```
LOEC \Longrightarrow 2 \mug/L (actual concn. 0.37 \mug/L)
NOEC \Longrightarrow 1 \mug/L (actual concn. 0.24 \mug/L)
```

Long-term exposure of CuPT induced vertebral deformity and inflammatory mass

Possible mechanism

Neuro-muscular blocking properties of (PS)2 and/or (PT)2