Chronic toxicity of antifouling biocides, copper pyrithione to a marine fish, the mummichog (Fundulus heteroclitus) OKazuhiko MOCHIDA¹, Katsutoshi ITO¹, Hiroya HARINO², Toshimitsu ONDUKA¹, Akira KAKUNO¹ and Kazunori FUJII ¹ 1 National Research Institute of Fisheries and Environment of Inland Sea, Fisheries Research Agency, Hiroshima, JAPAN 2 Osaka City Institute of Public Health and Environmental Sciences, Osaka 2 Osaka City Institute of Public Health and Environmental Sciences, Osaka, JAPAN #### Introduction **→** We have focused on toxicity of Metal pyrithione, such as copper pyrithione (CuPT) and zinc pyrithione (ZnPT) The 2nd and 3rd most used biocides in Japan (Okamura and Mieno, 2006) Embryo and larvae of fish could be influenced by the toxicity of the metal pyrithione #### In the present study · · · Chronic toxicity to a marine teleost fish (Early life-stage toxicity test) Effect of the metal pyrithione and their photo-degradation products on acetylcholinesterase activity #### **Early-life toxicity test** [OECD TG 210, etc] - Mummichog (embryo, late brastula – early gastrula) - Test chemical (CuPT) 0(Cont), 0.5, 1, 2 & 4 μg/L - Flow-through condition Fertilized egg (embryo) 14d 21d Water temp., 24.5±0.2 °C pH, 7.6 DO, 6.1±0.1 mg/L Dark (24h) • Growth • Survival 50d • Abnormality Water analysis CuPT ^{□→} LC-MS/MS ## Effect of long-term exposure of CuPT on time to hatch and hatchability of mummichog C, control; SC, solvent control * Significantly (*p*<0.05) different from value for control ### Effect of 50-d exposure of CuPT on growth of mummichog | Concn.
(μg/L) | n | Total length (mm) | Body weight (mg) | |------------------|-----------|-------------------|------------------| | Control (0) | 51 | 30 ± 0.7 | 302±21 | | Solvent Cont. | 58 | 32 ± 0.5 | 368±15 | | 0.5 | 50 | 30 ± 0.7 | 319 ± 20 | | 1 | 56 | 31 ± 0.5 | 308 ± 16 | | 2 | 64 | 25 ± 0.8 | 209±19 | | 4 | 52 | 16 ± 3.0 | 55±11 | Data significantly (p<0.01) different from value for control ### Effect of 50-d exposure of CuPT on survival of mummichog C, control; SC, solvent control ** Significantly (p<0.01) different from value for control ### Vertebral deformity induced by the exposure to CuPT Scale bars, 0.5 mm Ref. Vertebral deformity was also induced in medaka and zebrafish by ZnPT-exposure (Goka, 1999; Sánchez-Bayo and Goka, 2005) ### Inflammatory mass induced by the exposure to CuPT ### Morphological abnormality (%) induced by long-term exposure of CuPT | Concn. | Duration of exposure | | | | |---------------------|----------------------|---------------|-------------|--| | (μ g/L) | 30 d | 40 d | 50 d | | | Control (0) | 0 | 0 | 0 | | | Solvent Cont | 0 | 0 | 0 | | | 0.5 | 0 | 0 | 0 | | | 1 | 0 | 0 | 0 | | | 2 | 0 | 4.6 ± 5.3 | 5.5±6.4 | | | 4 | 0 | 75±29 | 100 ± 0 | | Index of abnormality #### The early life-stage toxicity test Time to hatch and growth are the most sensitive parameters. The lowest observed effect concentration (LOEC) \implies 2 μ g/L (actual concn. 0.37 μ g/L) The no observed effect concentration (NOEC) \longrightarrow 1 μ g/L (actual concn. 0.24 μ g/L) Effect of the metal pyrithione and their photo-degradation products on acetylcholinesterase activity Organophosphorous pesticide Inhibition of acetylcholinesterase activity (neuro-signal blocking) Induce vertebral deformity #### Degradation products of metal pyrithione CuPT, ZnPT HPS dine) (2-mercaptopyridine) • HPT (2-mercaptopyridine-Noxide) PO (Pyridine-N-oxide) • (PT)2 (2,2'-dithio-bis-pyridine-N-oxide) • (PS)2 (2,2'-dipyridyl disulfide) PSA (Pyridine-2-sulfonic acid) #### Inhibition assay for acetylcholinesterase activity • - Measured by the method described previously (Ellman et al., 1961) with a slight modification - Acetylcholinesterase from bovine erythorocyte (5 munits) ### Mechanism of the induction of the morphological abnormality ### Summary Based on toxic effects on time to hatch, growth and survival, ``` LOEC \Longrightarrow 2 \mug/L (actual concn. 0.37 \mug/L) NOEC \Longrightarrow 1 \mug/L (actual concn. 0.24 \mug/L) ``` Long-term exposure of CuPT induced vertebral deformity and inflammatory mass Possible mechanism Neuro-muscular blocking properties of (PS)2 and/or (PT)2