The 14t International Congress on Marine Corrosion and Fouling, July 27-31, 2008 Kobe, Japan

Non-fluorinated/non-PEGylated amphiphilic block copolymers and their

Jeremy W. Bartels, Peter L. Billings, and Karen L. Wooley

Sumiior 2008

Polymer chemistry approach to anti-biofouling coatings

Department of Chemistry, Washington University in Saint Louis

New generations of materials

The role of a complex surface in fouling prevention

Several factors play a role in effective anti-biofouling surfaces: Development of hyperbranched fluoropolymer-pol
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0 Study composition changes in complex amphiphilic block copolymers and ~ Reactions w A A
their effects on anti-fouling ability =
(IMajor compositional change from HBFP-PEG materials: —
JRemove the HBFP component and replace with a non-fluorinated,
high surface energy, crosslinkable, readily available monomer — W’l'xl‘“ o . H‘Wﬁ’h
isoprene a ——-—N L -
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reactions (except for water), including ether and hexanes!

PEO-b-Plp GPC PEO-b-Plp Thermal Data

o [ e

% |r . o | f
— t . - T o

IDSC data shows thermal transitions for respective blocks and

QO GPC shows successful chain extension (>90% efficiency)
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and reasonable PDI (~1.3)

Complex surfaces: PEO-b-Plp
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Ongoing work

Future directions for non-Fluoro/non-PEG systems

Non-PEG/non-F polymers

Low VOC application Alternative crosslinking strategies: Thiol-ene reaction
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