

Analytical Method of Pyridine-triphenylborane by High Performance Liquid Chromatography

- Study of reversed-phase column and ion-pair reagent -

Kazuhiko KITAORI, Misaki AKIYAMA

Central Research Laboratories, Hokko Chemical Industry Co., Ltd.

2165, Toda, Atsugi-shi, Kanagawa 243-0023 Japan

Eiichi YOSHIKAWA, Mizuho HONMA

Chugoku Marine Paints Co., Ltd. 1-7, Meijishinkai, Ohtake-shi, Hiroshima 739-0652 Japan

Kazunobu TAKAHASHI

Marine Antifouling & Environment Consultant 2-6-13-1008, Shigita-higashi, Jyoto-ku, Osaka 536-0017 Japan

Introduction

Pyridine-triphenylborane (PTPB) is used widely to commercial copper-free self-polishing antifouling paints.

ISO/TC35/SC9/WG27 (ISO/WG27) is going forward to establish the standard method for measuring the release rate of biocides from antifouling paint 1). ISO/WG27 Japan working group associated with Japan Paint Inspection and Testing Association (JPIA) is going forward to develop the standard method for measuring the release rate of PTPB 2-3).

The analytical method of PTPB was drafted with a high performance liquid chromatography (HPLC) using a reversed-phase column and mobile phase containing 0.5 mol/l tetra-n-butyl ammonium phosphate (TBA-P) as ion-pair reagent. It was reported that proper peak of PTPB was not obtained by the draft using TBA-P supplied form Acros Organics and Nova-Pak® C18 (Waters) as HPLC column.

To clarify the amphibiotic test result, we have investigated the different five resources of TBA-P and eight kinds of the HPLC column in three laboratories.

Test substance

Pyridine Triphenylborane (PTPB)

CAS No.	971-66-4		
Molecular formula	C ₂₃ H ₂₀ BN		
Molecular weight	321.2		
Appearance	White to slightly yellowish powder		
Specific gravity	1.14		
Melting point	210°C (decompose)		
Solubility (at 20°C)	Water 0.08 mg/L		

PTPB standard: purity 99.1%,

Hokko Chemical Industry Co., Ltd. (Tokyo, Japan).

Ion-pair reagent

Table 1) The shape of PTPB peak and ion-pair reagent

Product	pH of mobile phase	Shape of PTPB peak	Sensitivity µg/ml *1	Correlation *2	Laboratory				
1) 0.5mol/l tetra-n-butyl ammonium phosphate (TBA-P)									
Tokyo Chemical	8.2	good	0.02	0.999	1, 2, 3				
Wako Pure Chemical	3.4	no peak	-	-	1, 2				
	7.5 *3	not clear	2	-	2				
GL Sciences	8.8	not clear	5	-	1				
Nacalai Tesque	8.4	not clear	2	-	1				
Acros Organics	3.8	no peak	-	-	2				
2) 0.25mol/l tetra-n-butyl ammonium sulfate *4									
Waters	7.2	not clear	1	0.984	2				

^{*1} Detectable minimum concentration of PTPB

- 1.Hokko Chemical Ind. Co., Ltd.
- 2. Chugoku Marine Paints Co., Ltd.
- 3. Kanae Paint Co., Ltd.

^{*2} Correlation coefficient of calibration curve

^{*3} The pH of mobile phase was adjusted to 7.5

^{*4} Mobile phase: acetonitrile/water/ion-pair reagent (60/38/2(v/v/v)) Laboratory

Ion-pair reagent (1)

The chromatogram of PTPB under the typical conditions

2. and 3. TBA-P: Tokyo Chemical Mobile phase: Acetonitrile/water/TBA-P (67/32/1)

PTPB: **2.** 0.1 μg/ml **3.** 1μg/ml

Apparatus: Hitachi L-7000

Column: Inertsil ODS-3(4.6x250mm, 5um)

Flow rate: 1ml/min. UV detector: 220nm Injection volume: 10µl

Ion-pair reagent (2)

The chromatograms of PTPB and TBA-P

1. TBA-P:

Wako Pure Chemical

Acetonitrile/water/TAB-P

(67/32/1), without adjusting pH

PTPB 20 μg/ml

Peak1
TBA-P: Tokyo Chemical
Acetonitrile/water/TBA-P
(65/34/1)
PTPB 20 μg/ml

Peak2-1, 2-2 and 2-3
TBA-P: Wako Pure Chemical Acetonitrile/water/TBA-P
(65/33/2), adjusted to pH7.5
Peak2-1=PTPB 20 μg/ml
Peak2-2=PTPB 4 μg/ml
Peak2-3=PTPB 2 μg/ml

3. TBA-P: GL Sciences PTPB 5 µg/ml

4. TBA-P: Nacalai Tesque PTPB 2 μg/ml **5.** TBA-P: Acros Organics PTPB 20 μg/ml

HPLC column: Inertsil ODS-3

HPLC column

Table 2) The Shape of PTPB Peak and reversed-phase HLPC columns

Product I.D.x length	, particle size	Supplier	Shape of PTPB peak	Sensitiv- ity µg/ml *1	Correla- tion *2	t _R , min. *3	Labora- tory *4
Inertsil	4.6x250mm,	GL	L ciences good	0.02	0.999	8.2 ¹⁾	1, 2
ODS-3	5um	Sciences				6.2 ²⁾	1
Wakosil 5C18	4.0x200mm, 5um	Wako Pure Chemical	good	0.02	0.999	6.1 ²⁾	1
Mightysil RP-18	4.6x250mm, 5um	Kanto Chemical	good	0.02	0.999	6.1 ²⁾	1
X-Terra C18	4.6x150mm, 3um	Waters	good	0.02	-	3.5 ¹⁾	1
Atlantis C18	2.1x150mm, 3um	Waters	good	0.02	-	2.5 ¹⁾	1
Nova Pak C18	4.6x150mm, 4um	Waters	good	0.02	1	3.8 ³⁾	1
L-Column C8	4.6x150mm, 5um	CERI	good	0.02	0.999	4.8 ¹⁾	3
SunFire C18	4.6x150mm, 5um	Waters	not clear	2	-	5.2 ¹⁾	1

^{*1} Detectable minimum concentration of PTPB

*3 t_R : Retention time

Mobile phase:

- 1) acetonitrile/water/TBA-P 65/34/1(v/v/v),
- 2) acetonitrile/water/TBA-P 67/32/1
- 3) acetonitrile/water/TBA-P 70/29/1

TBA-P: Tokyo Chemical

^{*2} Correlation coefficient of calibration curve

^{*4} Laboratory 1:Hokko Chemical, 2: Chugoku Marine Paints, 3: Kanae Paint

HPLC column

The chromatograms of PTPB and reversed-phase HPLC columns

1. Wakosil 5C18 PTPB 2 μg/ ml

2. Atlantis C18 PTPB 2 μg/ml

3. Nova-PakC18 PTPB 2 μg/ml

4. SunFire C18 PTPB 5 μg/ml

TBA-P: Tokyo Chemical

Conclusion

The clear and sharp peak of PTPB was obtained by using

- Ion-pair reagent:
 0.5mol/l tetra-n-butyl ammonium phosphate (TBA-P) supplied by Tokyo Chemical
- 2. HPLC column: commonly used ODS column except SunFire™ (Waters)

REFERENCES

- 1) ISO 15181-1:2007, Determination of release rate of biocides from antifouling paints Part 1: General method for extraction of biocides
- 2) ISO/FDIS 15181-4:2008, Determination of release rate of biocides from antifouling paints Part 4: Determination of pyridine-triphenylborane(PTPB) concentration in the extract and calculation of release rate
- 3) K. Takahashi, E. Yoshikawa, M. Akiyama, K. Kitaori and S. Masuoka: J. Jpn. Soc. Colour Mater., 78(2), 50-57(2005)