Effects of Copper on Survival and Growth of Marine Finfish

Takeshi Furuta, ¹ Kotaro Kikuchi, ¹ Haruo Sugita, ²

- ¹ Environmental Science Research Laboratory, Central Research Institute of Electric Power Industry
- ² Department of Marine Science and Resources, Nihon University

Copper release and regulation in Japan

- 101,272 kg of copper were released into public water bodies in 2006 (Ministry of Economy, Trade and Industry)
- Waste Water Standard for industrial effluent: 3mg-Cu/L
- No Environmental Quality Standard

Environmental Quality Standard to protect aquatic organisms

- Ministry of the Environment started to decide new Environmental Quality Standard in 2,000 to protect aquatic organisms
- Copper: one of the candidates for the Standard
- The Standard value = acceptable concentration with long-term exposure to aquatic organisms living in and around Japan

Copper toxic data to finfish

- Ecotox database: http://cfpub.epa.gov/ecotox/
 - <Fish> <Copper> <Laboratory> <Mortality, Growth> <Flow-through, Renewal, Static>
 - Publication years: 1915-2007

Data in total: 3,708

Freshwater, 3,312 >> Saltwater, 390

Unknown, 6

Species along the coast of Japan, 48

Others, 342

$$\leq$$
 4 days, 37

4 days
$$\leq$$
 \leq 7 days, 9 \rangle

Experimental study

- Acute toxicity test for juvenile
 - Testing water
 - Fish size
 - Water temperature
- Long-term toxicity test for juvenile
- Toxic data and Environmental Quality Standard
- Long-term toxicity test for larval stage (trial)

Testing fish used in this study

red sea bream (*Pagrus major*)

Japanese flounder (*Paralichthys olivaceus*)

- Important species for fishery and aquaculture in Japan
- Available of juvenile throughout the year
- Test method: OECD TG 203

Acute toxicity test procedure

■ Fish size

- Red sea bream: 0.5 to 13 g (7 sizes)
- Japanese flounder: 1.3 to 17 g (5 sizes)
- 20.0 ± 0.5 C

Water temperature

- Red sea bream (0.5, 1.1 g): 12, 15, 20, 25 C
- Japanese flounder (0.3, 0.4 g): 10, 15, 20, 25 C

Testing water

- Low pH artificial seawater
- Range of concentration
 - 0.04 to 41 mg-Cu/L

Copper precipitation in natural seawater (pH 8.1)

Copper added into natural seawater at 10 mg-Cu/L

Natural seawater

Composition of low pH artificial seawater used in this study

Reagent	Composition (mg/L)	
NaHCO3	192	
KCI	660	
CaCl2·2H2O	1,459 s	
Na2SO4	3,912 L	
MgCl2·6H2O	10,631	
NaCl	23,477	

artificial seawater by Lyman and Fleming (1940)

pH5.4~6.7

Copper solubility in natural and low pH artificial seawater

Mortality and growth of Japanese flounder in natural and low pH artificial seawater

Rearing water	Survival rate (%)	Body weig Initial	ht (wet, g) Final
Natural seawater	98±4	0.3±0.0	1.6±0.2
Low pH artificial seawater	95±3	0.3±0.0	1.5±0.2

Effect of fish size on copper acute toxicity

Effect of water temperature on copper acute toxicity

Effects of fish size and water temperature on acute toxicity of boron

Long-term toxicity test for juvenile

- OECD TG 215
- Fish: juvenile of 0.5 g
- Water temperature: 20 C
- Duration: 56 days
- Exposure type: flow-through
- Concentrations: 4 including control, 4 replicates
- Testing water: natural seawater (salinity 35, pH 8.1)
- Feeding: commercial pellet diet, twice daily, 6 days a week
- Effect measurement: mortality and growth
- Endpoint: LOEC

Mortality in long-term toxicity test

8

Growth of survived fish in long-term toxicity test

LOEC of copper in long-term toxicity test

Fish	LOEC		
	Mortality	Growth	
Red sea bream	0.12	ND	
Japanese flounder	0.9	0.9	

Summary of the results in acute and long-term toxicity tests for juvenile

- Acute toxicity test
 - Precipitation and testing water
 - Effect of fish size and water temperature on copper toxicity: not clear
- Long-term toxicity test
 - Acceptable concentration for mortality and growth: under 0.1 mg-Cu/L
 - Effect concentration: at least one-order smaller of acute LC50
- Sensitivity: red sea bream > Japanese flounder
- Different physiological response between 2 fish species

Acceptable concentration of copper for marine finfish

Acute toxic level to juvenile > 1 mg-Cu/L

Long-term toxic level to juvenile= 0.1 mg-Cu/L

Acceptable copper level for grow-out phase: under 0.1 mg-Cu/L

Long-term toxic level to embryo to larva= ???

---**>**

Acceptable copper level for <u>reproduction</u>: ???

Larval survival of false clown anemonefish

Long-term toxicity test for larva

- Fish: larva just after hatching
- Concentrations: 0, 0.04 0.64 mg-Cu/L
- Density: 15 ind./500mL
- Replication: 4
- Testing water: natural seawater
- Water temperature: 26.5 C
- Exposure type: static-renewal
- Feeding: newly hatched Artemia nauplius
- Duration: 30 days
- Effect measurement: mortality and growth
- Endpoint: LOEC

Effect of copper on mortality and growth of larval false clown anemonefish

- > NOEC and LOEC for mortality: ND
- NOEC and LOEC for growth: 0.04 and 0.08 mg-Cu/L
- Positive effect of copper at 0.04 to 0.16 mg-Cu/L