

Chemically Functional Nanostructured Antifouling Coatings

Niranjan Malvadkar and Melik C. Demirel

Department of Engineering Science and Mechanics Pennsylvania State University, USA

July 30, 2008

Outline

- Objective
- Film Preparation and Properties
- Antifouling Performance
- Conclusions

Objective

- To prepare nanostructured polymers using a complete bottom-up approach with controlled physicochemical properties, such as *mechanical properties, structure (morphology) and chemistry* for applications in the area of antifouling coatings
- Funding: Office of Naval Research, USA

Oblique Angle Polymerization

Boduroglu, S., Cetinkaya, M., Dressick, W. J., Singh, A. & Demirel, M. C. *Langmuir* 23, 11391-11395 (2007). 14th ICMCF, Kobe

Boduroglu, S., Cetinkaya, M., Dressick, W. J., Singh, A. & Demirel, M. C. *Langmuir* **23**, 11391-11395 (2007).

Evolution and Growth

0<p<0.3 high diffusion

PPX-C ----- p= 0.12

Cetinkaya, M., Malvadkar, N., Demirel, M.C. Journal of Polymer Science Part B: Polymer Physics **46**, 640-648 (2008).

Power-Law Scaling

Growth Model

Ballistic Monte Carlo Method

Cetinkaya, M., Malvadkar, N., Demirel, M.C. *Journal of Polymer Science Part B: Polymer Physics* **46**, 640-648 (2008).

Samples to Test Antifouling Performance

10

Effect of Nanotopography

Different morphologies but similar settlement results. (~10% variation)

Zoospore suspension (1.5 $\times 10^{6}$ ml⁻¹) at 20 °C

Simulated shear stress of 52 Pa in a water channel

14th ICMCF, Kobe

11

Antifouling Test are conducted in collaboration with Prof. Callow's group

Lateral Morphology Effects

Nanostructured polymer morphology (*without chemical modification*) produced an increase amount of removal (40%) for Ulva

Thickness dependence shows that **mechanical properties** are important!.

Conclusions

- A complete bottom approach to create nanostructured polymers for application as antifouling coatings
- Tunable physicochemical properties: morphology, topology, surface chemistry, mechanical properties.
- The surface wetting properties can be tuned hydrophobic adhesive adhesive
- Nanostructured polymer morphology produced an increase amount of removal (40%) compared to planar films with exactly same chemistry. (importance of nanotopography on antifouling)

Acknowledgements

Demirel Lab:

•<u>Post-doctoral Fellows:</u> Dr. Serhan Boduroglu, Dr. Hui Wang

•<u>Graduate Students:</u> Eric So, Ping Kao, Niranjan Malvadkar, Murat Cetinkaya, Rama Gullapalli, Sunyoung Park

•<u>Undergraduates:</u> Ashlee Mangan, Tomas Marko, Brendon Purcell, Mike Anderson

Outside (Active Collaborators):

Walter Dressick(NRL): Metallization
David Allara(Penn State): SERS
Kathy Wahl (NRL): Mechanical Properties
Callows' group (Birmingham, UK): Antifouling-John Finlay, Maureen Callow

Appendix Slides

Antifouling Studies Using Ulva Spores

Comparative study with PDMSe antifouling coating

Zoospore suspension (1.5 x10⁶ ml⁻¹) at 20 $^{\circ}$ C

Simulated shear stress of 52 Pa in a water channel

Mechanical Properties

Do material anisotropies influence friction, deformation processes?

In collaboration with Kathy Wahl (Naval Research Lab) 14th ICMCF, Kobe

Contact Depths During Sliding

20 µm

Penetration Depth vs. Load

K. Wahl, E. So, M. Demirel

Mechanical Deformation Hysteresis

PENNSTATE

Sliding perpendicular to film results in no hysteresis, predicted depths between with/against