

CAWTHROM

Assessment of en route hullfouling survivorship on moving vessels

Richard Piola¹, Ashley Coutts² & Grant Hopkins¹

- ¹ Cawthron Institute, New Zealand
- ² Department of Agriculture, Forestry & Fisheries, Australia

Hull fouling

- Non-indigenous marine species introductions
 - Transfer between countries / bioregions
 - Spread within countries / bioregions
- Significant impacts
 - diversity
 - stability
 - economic potential

Factors affecting hull-fouling

- Maintenance history of vessel
 - anti-fouling paints
 - dry-docking
- Vessel type and speed
- Vessel activity
 - plying regular routes
 - extended lay-up periods

www.sailinport-services.co.uk/gallery.htm

PHOTO: T. Dodgshi

Why look at en route hull-fouling survivorship?

Vessel surveys can tell us what arrives in a port...

...but can't tell us assemblages characteristics before arrival

- Before / after survival studies aid predictive ability
 - Based on pre-voyage fouling
 - High risk vessel characteristics
 - High risk vessels routes
 - Potential organisms of risk

MAGPLATES

Developed by Ashley Coutts

Coutts ADM, Taylor MD, Hewitt C (2004). Novel method for assessing the en route survivorship of biofouling organisms on various vessel types. *Marine Pollution Bulletin* 54: 97–116

En route hull-fouling survivorship

- Attached fouling communities to:
 - Merchant vessel
 - Towed barge
- Photographed at start & end of voyage
- Analysed using 50 point count (image analysis)
 - Species % cover
 - Species richness
- En route water temperature recorded

MAGPLATES

Fouling assemblages attached

- >6 months old
- Diverse assemblage composition

PHOTO: Richard Piola

PHOTO: Richard Piola

Assemblage composition

Soft bodied / upright taxa

Colonial ascidians

Solitary ascidians

Erect bryozoans

Hard bodied / encrusting taxa

Serpulids

Spirorbids

Encrust Bryozoans

Bivalves

- "Spirit of Resolution"
 - 100m container vessel
 - Average speed: 15 knots
- Regular 7 days voyage of NZ
 - Plying time ~ 85 hr/week
 - Distance: 1000 NM

MAGPLATE locations

• 3 - 5 MAGPLATEs per location

PHOTO: Ashley Coutts

PHOTO: Ashley Coutts

STARTING ASSEMBLAGE

<u>Circles</u> = Groups with >70% Bray-Curtis similarity

STARTING ASSEMBLAGES

- Colonial ascidians (33%)
- Solitary ascidians (25%)
- Calcareous tubeworms (16%)
- Encrusting bryozoans (6%)
- Mussels (4%)

FINAL ASSEMBLAGES [Bow, Mid, Stern]

- Bare space (59%)
- Calcareous tubeworms (17%)
- Encrusting bryozoans (4%)
- Solitary ascidian remnants (5%)

FINAL NICHE ASSEMBLAGE

- Bare space (31%)
- Calcareous tubeworms (36%)
- Encrusting bryozoans (12%)
- Colonial ascidians (6%)

80-95% reduction soft / upright cover 45-65% more soft / upright cover in niche

Hard / encrusting cover unchanged

- "Kimihia"
 - 30m towed barge
 - Average speed: 5 knots
- 3 day voyage
 - Plying time 66 hr
 - Distance: 330 NM

MAGPLATE locations

• 3 MAGPLATEs per location

STARTING ASSEMBLAGE
FINAL ASSEMBLAGE

<u>Circles</u> = Groups with >70% Bray-Curtis similarity

<u>STARTING ASSEMBLAGES</u> & FINAL NICHE ASSEMBLAGES

- Calcareous tubeworms (26%)
- Colonial ascidians (15%)
- Bare space (12%)
- Solitary ascidians (15%)
- Sabellids (12%)
- Arborescent bryozoans (5%)

FINAL ASSEMBLAGES

- Bare space (30%)
- Calcareous tubeworms (27%)
- Colonial ascidians (15%)
- Empty sabellid tubes (6%)
- Solitary ascidians (5%)
- Arborescent bryozoans (2%)

30-65% reduction soft / upright cover 22-60% more soft / upright cover in niche

Hard / encrusting cover unchanged

Proportion of serpulids alive

Temperature tolerance

Merchant vessel ∆ 3.8 °C in ~3 hours

Barge ∆ 3.7 °C in ~2 hours

Conclusions

- Survival and species cover
 - Greater on slower barge hull
 - Greater overall attachment & survival in niche area
- Morphology
 - Hard encrusting taxa showed superior survival
 - Soft-bodies taxa survived in niche areas
- Substantial temperature tolerance observed

Ongoing research

- Concentrating on slower vessels (e.g. barges)
 - Greatest levels of fouling survival
 - Pose the greatest threat
- Different niche areas
- Flume studies to separate confounding factors
- Longer voyage times
 - Trans-Tasman
 - Trans-equatorial

Acknowledgements

- FRST Funding: C01X0502

 (Management of Marine Biodiversity and Biosecurity Partnership)
- Pacifica Shipping
- Spirit of Resolution skipper and crew
- McManaway Marine
- Bruce Lines (Diving Services NZ)
- James Brodie (Marlborough Commercial Diving Services)
- Nelson Port Authority
- Operator & residents Nelson Marina