Standardization of Marine Environmental Risk Assessment Method for Active Substances in Anti-fouling Systems

Noriyasu Nagai*, Keisuke Namekawa[†], Eiichi Yoshikawa[‡] and Tetsuya Senda**

*Japan NUS Co., Ltd.

†Arch Chemicals Japan, Inc.

‡ Chugoku Marine Paints, Ltd.

** National Maritime Research Institute

Outline of this presentation

- To introduce updated ISO standard draft prepared in JSTRA* since 2006
- Overview of this standard draft
 - background & aims
 - scope of application
 - structure & procedural steps
 - assessment method and result
 - schedule

Background

- Need for global control of active substance in AFS
- Anti-fouling system (AFS) using active substance is common for ships
 - such as anti-fouling paint ...
- Active substances are essentially harmful to aquatic organisms by their nature
- Global control system is needed for sustainable use of active substances while protecting environment and human health

Background

- AFS Convention

- AFS Convention* prohibits OTs† use in ships' anti-fouling system
- Convention can handle other anti-fouling system
- Annex 2 & 3 show list of information needed to determine whether anti-fouling system is harmful
- Annexes do not include method of risk assessment for evaluating the harmfulness of anti-fouling system

^{*} International Convention on the Control of Harmful Anti-fouling Systems on Ships

[†] Organotin compounds

Background

- Country-specific control
- Some countries control risk of OTs-free antifouling system and active substances
 - EU: Biocidal Product Directive (BPD)
 - US: Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA)
- Many of developing countries have no regulation targeting OTs-free AFS and active substance

Why ISO standard?

- Global need for international test- and assessment method for scientific environmental risk assessment for active substances or anti-fouling system substituting organotin (OTs)
- ISO is the most appropriate forum for developing such system
 - transparency in its making process
 - normative guidelines for regulation & assessment in countries without such system

Series of this ISO standard

- ISO standard draft Part 1 for marine environmental risk assessment method for active substance
- The following parts will also be prepared:
 - Part 2: Marine environmental risk for <u>AFS</u>
 - Part 3: Human health risk for application and removal of AFS

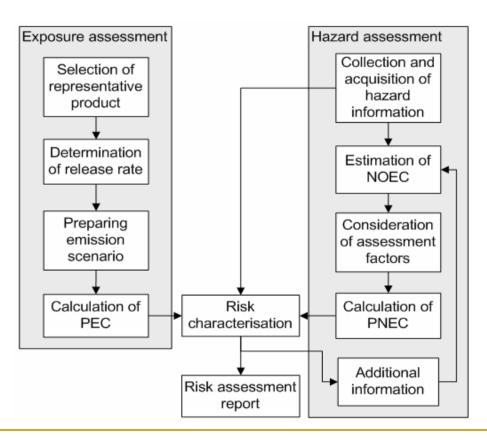
Aims of this ISO standard

- The system being proposed in this draft aims to provide;
 - a useful method to be used for supporting the evaluation of the harmfulness of the anti-fouling system in the Convention
 - a pragmatic approach to introduce systems in the countries with either no system, or a less-well developed system and to allow such countries to further contribute to protection of the aquatic environment

- Scope of application
- This draft can be used for the following:
 - Regulation of anti-fouling paints by government organizations
 - Self-regulation or approval system carried out by industries or industrial organizations
 - Evaluation conducted for product development by industries
- This draft only provides methods of risk assessment, and not directly a regulatory scheme/system

ISO standard draft – Scope of application

Coverage & definitions


- Assessment can cover the following:
 - Marine environment
 - marine includes estuarine and brackish water area
 - Also Applicable to fresh water area
 - Active substance(s)
 - chemical substances for prevention of attachment of sessile organisms, in anti-fouling systems
 - impurities and by-products contained in product > 1%
 - degradates in environment >10% of the parent
- Definitions
 - ships: same as AFS Convention

- Exclusion of application

- This draft is not applicable for the following life stage of ships:
 - application process of system on ships
 - overhaul, reconditioning
 - disposal, collecting and recycling process of ships, etc.
- This draft is not applicable for the following AFS:
 - applied to ship's surface for acting on harmful aquatic organisms and pathogens in ships' ballast water and sediments, based on BWM Convention*
 - applied to fishing gears, buoys and floats used for the purpose of fishing, fishery stock enhancement and aquaculture
 - applied small patches to ships for the purpose of test, research or development of product

^{*} International Convention for The Control and Management of Ships' Ballast Water and Sediments, 2004

- Structure & procedural steps

Exposure assessment

Representative product

- containing higher ratio of active substance
- demonstrates effective anti-fouling activity
- its anti-fouling efficacy is attributed to active substance
- showing the maximum release rate in plural products

Release rate

- three existing methods are described in Annex
- laboratory, calculation and field methods

Exposure assessment

- Emission scenario
 - existing emission scenarios for anti-fouling products are provided in the OECD ESD
 - considering type of marine environment
 - Open sea, Sea lane, Harbor, Marina
 - determining a representative area
 - major emission area
 - amount of navigation
 - contamination level estimated from monitoring result and transition of existing active substances
- emission models & parameters
 - examples of existing emission models are shown in Annex
 - parameters should be set to give a <u>realistic</u> worst case scenario

Hazard assessment & assessment result

- PBT assessment in risk characterization
 - Persistency in environment (P)
 - Bioaccumulation (B)
 - PEC/PNEC ratio of parent/degradates (T)
- Tier system
 - Tier 1 has severe criteria for P & B
 - if match criteria of Tier 1, "low risk"
 - Tier 2 has mild criteria for P & B, but requires to show;
 - Low adsorption
 - Well-decreased biocidal activity
 - PEC/PNEC for higher trophic organisms (predator, mammal etc.)
 - Risk characterization of degradate >10%

Hazard assessment & assessment result

- Level system
 - 2 Levels in Tier 2
 - □ Level 1 has criteria for P, B, T and adsorption (Kp)
 - Level 2 has requirement for
 - showing decreased biocidal activity
 - PEC/PNEC for higher trophic organisms (predator, mammal etc.)
 - Risk characterization of degradate (>10%)
 - if match criteria of Level 1 of Tier 2, "tentatively classified as relatively low risk"
 - if match criteria of Level 2 of Tier 2, "relatively low risk".
 - if not match criteria of Level 2 of Tier 2, "risk of high concern"

Assessment for metabolites

- Metabolite >10 % of parent
 - acute and long-term toxicity test results
 - □ PEC/PNEC ≥ 1 : "Risk of high concern" for parent active substance
 - PEC/PNEC < 1 : continue to assess for parent active substance

Schedule

This ISO standard draft will be submitted to ISO soon

Please participate after the discussion starts in the Working Group in ISO/TC8/SC2

Thank you for your attention.